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SUMMARY

We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radio-
collared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon.
Spatially and temporally explicit vector fields were estimated using approximating difference equations and
nonparametric regression techniques. Estimated vector fields of movement were mapped onto the project area at
selected times of the day to examine spatial patterns of movement in relation to topography. Using the concept of a
potential function, we were able to study the influence of roads and grassland foraging areas on elk movements.
Doing so we identified broad spatial patterns of elk movements and showed the time dependent effects of habitat
features within the habitat mosaic at Starkey. Our analyses quantify the cycles of movements in spring and summer
in terms of attraction or repulsion to specific habitat features, and illustrate the magnitude, timing and direction of
these movements. An extensive list of references is included. Published in 2004 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Studies on the movement and foraging behavior of wild ungulates (e.g. elk and deer) provide essential

information for wildlife managers. Movements of ungulates have been studied to examine a range of

ecological questions related to dispersal, home ranges, foraging strategies, habitat grain, natural

disturbance and herbivory (Turner et al., 1993; Gross et al., 1995; Focardi et al., 1996; Lima and

Zollner, 1996; Carter and Finn, 1999; Moorcroft et al., 1999; Zollner and Lima, 1999; Bergman et al.,

2000; Wu et al., 2000). The broad goal of animal movement studies is to better understand the

complex interactions between animal behavior, environmental and human caused disturbances, and

animal distributions in space and time. Understanding factors influencing animal movement and

dispersal is critical for preserving and rebuilding threatened or endangered populations.

There is a wealth of statistical methodology dealing with monitoring and analysis of wildlife

populations; see Environmetrics (Special issue, 2002). Modeling animal movements is one of the more

challenging aspects of wildlife studies. Existing models for analyzing movements include models
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based on stochastic differential equations (SDEs), and in particular, random walks and diffusion

processes. The theory and some of the practice of vector-valued diffusion processes are found in

Karlin and Taylor (1981) and Bhattacharya and Waymire (1990). The Ornstein–Uhlenbeck process

employed by Dunn and Gipson (1977) and Dunn and Brisbin (1985) is an example of such a process.

Brillinger (1997) and Brillinger and Stewart (1998) use SDEs to model elephant-seal migrations.

Anderson-Sprecher and Ledolter (1991) and Anderson-Sprecher (1994) use a state-space model to

allow for measurement error in locations of individual mule deer (Odocoileus hemionus). Newman

(1998) also uses a state-space model to describe movement and mortality of Pacific coho salmon

(Oncorhynchus kisutch). Kendall (1974) developed a variety of results for movement of birds heading

to a target. Kareiva and Shigesada (1983), Wagner (1986) and references therein, are concerned with

studies of flies moving under the influence of the environment and other flies. Preisler and Akers

(1995) are concerned with movement of bark beetles under the influence of pheromones. In an

environmental hazard analysis Moore (1985) and Zwiers (1985) model iceberg movements as vector

ARIMA processes. Some authors, e.g. Niwa (1996), seek to describe animal movements by variants of

Newton’s equations of motion. Minta (1992) is concerned with interactions among moving animals. In

particular, Minta studies the overlap in home range by observing the presence or absence of the animal

in a shared area. White et al. (1996) use partial differential equations to model the density of wolf

packs and wolf–deer interaction. Mladenoff et al. (1999) use a logistical model to describe the effects

of road density on probabilities of gray wolves’ presence in an area. Clark et al. (1993) developed a

model based on the Mahalanobis distance statistic to study the effects of spatially explicit habitat

characteristics to identify areas of high use by female black bears. Blackwell (1997) uses a

generalization of the Ornstein–Ulenbeck process to accommodate different behavioural or physiolo-

gical states of the animal. Bengtsson et al. (2002) use SDEs where the diffusion terms for different

individuals are correlated in an attempt to study the dispersal patterns of soil Collembola in the

presence of organisms from the same species. Further references on analyses of animal movements

using radio-telemetry are found in Bowyer (2001) and Turchin (1998).

In this article we describe the application of SDEs and the concept of a potential function, first

discussed in Brillinger et al. (2001a), to model animal movement and estimate spatially and

temporally explicit movement parameters. Previous works on this topic include Brillinger et al.

(2001a,b, 2002) and Preisler et al. (1999, 2001). We demonstrate the use of the methods by analyzing a

large set of radio-telemetry data collected from female Rocky Mountain elk (Cervus elaphus nelsoni)

on the Starkey Experimental Forest and Range (hereafter, Starkey) in northeastern Oregon (Rowland

et al., 1997). We include habitat covariates (road refugia and grasslands outside refugia used for

foraging) that are known to influence elk distributions at Starkey, and examine the changes in

movement patterns between two seasons (spring and summer).

2. STUDY AREA

Starkey Experimental Forest and Range is located 35 km southwest of La Grande, Oregon, in the Blue

Mountains of northeastern Oregon, USA. This 10 125-ha project area is enclosed by a 2.4-m high

fence that prevents immigration or emigration of resident elk and other large mammals (Rowland et al.,

1997). Starkey is divided into multiple subunits, the largest being a 7762-ha main study area where

data for the current study were obtained (Figure 1a). Starkey is situated at about 1500 m elevation and

supports a mosaic of coniferous forests, wet meadows and grasslands that typify summer range habitat

for elk in the Blue Mountains. A network of drainages creates a complex and varied topography
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(Figure 1a). Details of the study area and facilities are available elsewhere (Rowland et al., 1997;

Johnson et al., 2000).

3. METHODS

3.1. Telemetry data

Elk locations were obtained by an automated telemetry system that uses retransmitted LORAN-C

radio navigation signals (Rowland et al., 1997). A subset of the Starkey telemetry data was selected for

two intervals, April 15–May 15 (spring) and July 15 to August 15 (summer) for the years 1993, 1995

and 1996. Johnson et al. (2000) and Ager et al. (in press) have shown large differences in the patterns

of habitat use by elk over these two periods.

We used recorded locations from 216 individual elk. The mean elapsed time between locations for

each animal averaged 53 min. Locations were assigned habitat information by matching each

observation to the closest 30-m� 30-m pixel. Locations had a mean error of 53 m (Findholt et al.,

1996). Calculations of movement were deleted if elapsed time was <5 min or >150 min between

successive observations of animals. The Main Study Area at Starkey is 3–4 times larger than typical

summer home ranges of elk in the Blue Mountains. This provides elk with large-scale habitat choices

commensurate with free-ranging herds. The approximately 30–40 elk per season/year in our study that

Figure 1. (a) Topography of the main study area at the Starkey Experimental Forest and Range, northeastern Oregon. (b)

Locations of roads open to vehicular traffic (black lines) and regions where slope exceeds 40% (gray)
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were tracked simultaneously were single female elk selected at random out of a total population of

311–386 adult cow elk in Starkey.

3.2. Movement model

Following the work in Brillinger et al. (2001b), we used stochastic differential equations to describe

the incremental step movement of an animal at time t and location rðtÞ ¼ fXðtÞ; YðtÞg0. Specifically,

we used the equations:

dXðtÞ
dYðtÞ

� �
¼ �xfrðtÞ; tg

�yfrðtÞ; tg

� �
dt þ DfrðtÞ; tg dWxðtÞ

dWyðtÞ

� �
ð1Þ

Here, dXðtÞ and dYðtÞ are the incremental step sizes in the x and y directions; vector l ¼ ð�x; �yÞ0 is

the drift parameter; D, the diffusion matrix, describes the correlation between the steps in the x and y

directions and over time; �x; �y are random processes with expected values equal 0. In the case that

�x; �y are independent Brownian processes and l and D are continuous in t, the resulting process is a

diffusion process that is Markovian with continuous sample paths. The parameters l and D and the

random processes control the direction and speed of the motion. The vector l represents the

instantaneous velocity of an animal at time t and position r. The random process W ¼ f�x; �yg
introduces variability into the deterministic motion drðtÞ ¼ dlðtÞdt.

Some special cases of (1) are:

1. l ¼ 0; D ¼ �2I, with I the 2� 2 identity matrix and �x; �y independent Brownian processes. This
corresponds to a continuous random walk where animals travel at random with no drift in any
particular direction.

2. l ¼ A; D ¼ �2I; and �x; �y are independent Brownian processes. This corresponds to a biased
random walk where animals drift in the direction of vector A.

3. l ¼ A ½rðtÞ � a�; D ¼ �2I; and �x; �y are independent Brownian processes. This corresponds to
the mean-reverting Ornstein–Uhlenbeck (O-U) process where animals are drifting, i.e. attracted to
the central point a.

4. l ¼ 0; D ¼ �2I; and �x; �y are processes with positively correlated increments. This corresponds
to a correlated random walk (CRW) where animals move with persistence in a given direction, i.e.
consecutive moves are correlated. In the O-U process, an animal’s consecutive moves are also
persisting in a given direction; however, the persistence is because of attraction toward a common
point such as a food patch or the center of the home range.

Other more general models may be obtained, for example, by specifying non-Markovian random

processes �x; �y, or by involving time lags in the modeling of the drift term, l.

3.3. Estimating the drift term

We calculated estimates of the drift terms as smooth functions of time and space by approximating the

SDEs in (1) by the difference equations:

ðXiþ1 � XiÞ=ðtiþ1 � tiÞ ¼ �xðXi; Yi; tiÞ þ �x"1i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti

p

ðYiþ1 � YiÞ=ðtiþ1 � tiÞ ¼ �yðXi; Yi; tiÞ þ �y"2i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti

p ð2Þ
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where (Xi; Yi), i¼ 1; 2; . . . , is the location of an animal at time ti, with t1 < t2 < t3 . . .; "1i; "2i are

white noise; and �x; �y are unknown constants. The model in (2) assumes a diagonal diffusion matrix,

D. This assumption was partly justified by the negligible correlations between the observed unit step

sizes for the spring and summer data (0.021 and �0.068, respectively). Moreover, a study done using

1994 Starkey elk data (Brillinger et al., 2002) seemed to indicate that when the estimated drift term, l̂l,

which representing a common component affecting all elks simultaneously, is removed from the series,

the residual series in the x- and y-directions were not correlated in a linear time-invariant manner.

The slopes (km/h) on the left-hand side of (2) from all elk within a season (spring or summer) were

analyzed simultaneously. Plots of the estimated vectors f�̂�xðX; Y ; toÞ; �̂�yðX; Y ; toÞg for a given time to
at each location (X, Y) display the expected vector fields describing movement patterns of elk at

Starkey. Estimates of the drift surfaces were calculated by the nonparametric regression routine

LOESS (Cleveland et al., 1992) within the generalized additive model GAM (Hastie, 1992).

Preliminary analysis had suggested that elk movements were affected by both location and the time

of day. Consequently, the drift terms were modeled as smooth functions of location and hour of the

day, henceforth denoted by <t> with values between 0 and 24 h. All time values were Pacific Standard

Time.

3.4. Including habitat variables

In the previous section we indicated how one could estimate the drift term as a smooth function of

location and time of day. In this section we describe how to include local habitat variables in the model

and estimate the significance of different explanatory variables on movement. We used the concept of

potential functions (Brillinger et al., 2001a) to motivate a form for the drift term as a function of

distances to selected habitat covariates. Potential functions have often been used to describe motion in

Newtonian dynamics (Goldstein, 1950). Assume there exists an external force field acting on an

animal and, hence, controlling the movement. The function, HðrðtÞ; tÞ, that describes this force field at

location r and time t is referred to as a potential function. When a potential function exists, the

relationship between the function and the drift term is given by

lðr; tÞ ¼ �rHðr; tÞ ð3Þ

where r ¼ f@=@x; @=@yg0 is the gradient operator. For example, HðrÞ ¼ jr� aj2 corresponds to

motion with a point of attraction at a, i.e. the O-U process.

If animals are attracted or repelled from grassland foraging areas or other habitat features at certain

times of the day then H(r) might be assumed to depend on distances to the habitat feature. For

example, if the shortest distance from an animal at r to a foraging area is d(r), then Hðr; tÞ ¼ hðdðrÞ; tÞ
for some function hð�Þ.

One advantage of the potential function approach is that independent potential functions from a

variety of sources may be added to give a description of a combined force field acting on an animal as

follows:

Hðr; tÞ ¼ h1ðd1ðrÞ; tÞ þ h2ðd2ðrÞ; tÞ þ � � � þ hmðdmðrÞ; tÞ ð4Þ

where dk; k ¼ 1; . . . ;m, are distances to m points of attraction or repulsion, such as distances to roads,

to food, to streams, etc. Using (3), the corresponding drift term will be:
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�xðr; tÞ ¼ 2fðX � U1Þh01 þ ðX � U2Þh02 þ � � � þ ðX � UmÞh0mg
�yðr; tÞ ¼ 2fðY � V1Þh01 þ ðY � V2Þh02 þ � � � þ ðY � VmÞh0mg

ð5Þ

where (Uk; Vk) is the location of the center of the kth region of attraction or repulsion; h0k is the partial

derivative of hk with respect to d2
k ¼ ðX � UkÞ2 þ ðY � VkÞ2

. It is interesting to note that although the

potential function (4) was assumed to depend on location only through the distance variables (i.e. a

scalar variable with no direction), the drift term (5) is still a vector variable depending on distance and

location.

Based on previous work at Starkey and elsewhere, we chose four specific variables to test as

explanatory variables in our movement model. The four variables were road refugia, distance to

grassland foraging areas outside those refugia, distance to canyons (slopes >40%) and distance

to nearest stream. We captured the avoidance to roads by identifying areas where animal’s distance to

roads is greater than 1.0 km (defined here as road refugia). We excluded road segments at Starkey that

were closed to vehicular traffic in the identification of road refugia. Foraging areas were defined as

grasslands where tree canopy was less than 5% and outside of road refugia.

We used thin plate spline functions (Hastie et al., 2001) as the functional forms for the individual

potential functions hkðdk; < t>Þ for k¼ 1; 2; 3; 4. Thin plate spline functions are a generalization of

one-dimensional smoothing splines to two or more dimensions (see Appendix). We found these

functions useful here because they allow the fitting of complicated smooth curves and surfaces but at

the same time they are parametrically simple enough so that their derivatives are tractable (see

Appendix). Derivatives were needed because we wished to fit the drift terms in (5) which involve the

derivatives of the individual potential functions. The required modules for fitting thin plate splines

within S-PLUS were downloaded from the web (Geophysical Statistical Project, 2002).

We used likelihood ratio test statistics to evaluate the significance of each of the terms in (5), and

consequently the significance of the four chosen distance covariates on the potential function

describing elk movement.

3.5. Comparison of deterministic and random components in movements of elk

Effects of spatial location and time of day on the variance, i.e. the diagonal terms in the matrix D, were

studied by fitting the model

logðjêeikjÞ ¼ �k þ f ðX; Y ; < t >Þ þ �"ik k ¼ 1; 2 ð6Þ

where êe are the residuals in the x-direction when k¼ 1 and in the y-direction when k¼ 2; f ðX; Y ; < t>Þ
is a smooth function of location and time in day; � and � are unknown parameters and the "s are

independent standardized errors. The function f was estimated using the generalized additive model

function gam() in S-PLUS (2001).

The drift and variance terms of SDEs offer different insights on movement. The drift measures

strategic moves over longer time periods, such as movements that lead to habitat shifts during early

morning and evenings. In the temporal scale of our data (�1 h) these moves are the daily shifts

between grassland foraging areas and areas distant from roads. The variance term measures the shorter

temporal moves of animals, possibly resulting from sudden reactions to anthropogenic disturbance,

topography, and other habitat features that we did not consider. The latter fine-grain movements are

what motivate the random component in the model. The probability of an animal moving in a given
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direction with a given step size is a function of the ratio of these long- and short-term movements (ratio

of drift to standard deviation).

In our model, the error term represents the random portion of movement in addition to

measurement error due to inaccuracies in the telemetry system. The ratios �̂�x=�̂�x and �̂�y=�̂�y were

computed to estimate the fraction of total variability in movement that is not due to random walk or to

measurement error.

The ratio of drift to diffusion is also useful for building simulation models of animal movements.

When the random error processes, �x; �y, in (1) are Brownian, i.e. movements are approximated with

a diffusion model with drift, animal tracks may be simulated using the following equations. Consider

an animal at location (x; y) at time t. In the next small time interval �t the animal moves to location

(x� �x

ffiffiffiffiffiffi
�t

p
; y� �y

ffiffiffiffiffiffi
�t

p
) with probabilities

1

2
1 � �x

�x

ffiffiffiffiffiffi
�t

p� �
and

1

2
1 � �y

�y

ffiffiffiffiffiffi
�t

p� �

for moves in the x- and y- directions, respectively (Prohorov and Rozanov, 1969). The approximation

is reasonable when �t is small. Simulated animal paths, using estimates of the drift and diffusion

terms computed from observed paths, may be useful for estimating animal density, calculating

bootstrap standard errors, and testing hypotheses about animal movements across heterogeneous

landscapes. Brillinger (2003) discusses methods for simulating diffusion processes when the move-

ments are in a restricted region, such as the fenced area of Starkey.

4. RESULTS

4.1. Movement vector fields

We observed a significant drift in the movement patterns of elk in both the spring and summer data

sets. Both the spatial location and time of day had significant effects on the drift vector l (P-value

<10�8). The temporal dependence can be anticipated in animal movements because of the circadian

(24-h period) cycles between foraging and resting areas. Estimated vector fields l̂l for spring showed

the strongest movement vectors during the crepuscular twilight periods (Figures 2 and 3) and revealed

spatial patterns of movement between grassland foraging area and road refugia at Starkey. The

estimated drift terms were largely nonsignificant for most other time periods, especially during midday

and midnight. The latter suggests that at those hours observed elk movements were not significantly

different from random walk.

The vector fields revealed the strong influence of terrain on the landscape patterns of movements.

Starkey is divided by Meadow Creek, a 300 m deep canyon that dissects the project area from west to

east, and Bear Creek, which runs north and south (Figure 1a,b). The drainages appeared to split the

spatial pattern of movements (Figure 2b) into three fairly distinct regions (northeast, west and east).

The effect of Meadow Creek canyon on movement vectors can be seen in Figure 4, where no vectors

appear to be crossing the canyon. Bear Creek had similar effects (Figure 2b) although a road parallels

the drainage and may have confounded this comparison.

We found qualitative changes in estimated vector fields between spring and summer (Figure 5).

Estimated drifts were markedly diminished in the summer, although there still was some evidence

of the elk’s avoidance of steep terrain. Most notably absent was the zone of strong movements at

MODELING ANIMAL MOVEMENTS 649

Published in 2004 by John Wiley & Sons, Ltd. Environmetrics 2004; 15: 643–657



1900 hours on the southeast side of Starkey. The same is true for the network of meadows on the west

midsection of Starkey that attract elk earlier in the season. A combination of early forage maturation

and previous foraging in the spring reduces both the biomass and protein content of the bunchgrass

meadows in summer at Starkey, and elk concentrate their foraging under forest canopy where more

mesic (wet) conditions sustain the growth of herbaceous species.

4.2. Potential functions for habitat features

We used the potential function approach to quantify the effects of specific habitat features on

movement. We found all four distance covariates—i.e. distance to road refugia, food patches, canyons

and streams—to have significant effects on the potential function for elk movement. Plots of estimated

individual potential curves for two of the covariates (Figure 6) demonstrate the attraction at dawn

during spring to road refugia and at dusk to food patches (imagine a ball rolling along the contour

lines). The estimated potential surfaces combining the effects of all four sources of attraction/repulsion

for dawn and dusk in the spring are given in Plates 1 and 2. These surfaces are compared with the

stationary kernel density estimates of the elks a few hours later, i.e. around midday and midnight when

elk appear to have reached hiding or foraging areas (drifts vectors are mostly zero). If during dawn and

dusk elk are attracted to regions of low potential then we expect to see a high density of elk in those

regions around noon and midnight when most elk appear to reach their destinations. Plates 1 and 2

seem to confirm our expectations. Most of the areas of low potential (attraction regions) appear to

Figure 2. Gradient vector fields for 0500 (a) and 1900 (b) hours estimated from the spring telemetry data. Arrows were plotted

where at least one elk was observed. The unit vector corresponds to 0.8 km/h. The plots illustrate the crepuscular transitions

between areas used for resting and ruminating during the day, and foraging from dusk to dawn
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correspond with the regions of high density a few hours later. The four distance variables picked to be

included in the movement model appear to describe many of the features of the stationary distribution

of elk.

4.3. Comparison of deterministic and random components in movements of elk

Ratios of the deterministic to random components of movements, �̂�=�̂�, smoothed over time of day,

were computed for the x- and y-directions. For both spring and summer, the deterministic to random

ratio showed maxima during the dawn and, except for the summer, dusk hours (Figure 7). In spring, the

ratio for the y-direction approached 1.0, implying that deterministic and random movements were, on

average, of equal magnitude. Interestingly, the ratios for spring were higher in the y-direction than in

the x-direction. In other words, there was more random error in the data in the E-W direction. Two

factors that may have contributed to the observed differences: landscape use of forage and road refugia

involved a stronger N-S component than E-W; there is more measurement error in the data in the E-W

direction compared to the N-S direction (Findholt et al., 1996). From the vector plots (Figure 2) it can

be seen that many of the dominant spring movement vectors are oriented north–south, suggesting

higher drift in this direction.

Comparison between spring and summer suggested that the deterministic to random ratios for the

summer were considerably smaller, and most movements were composed largely of random noise

rather than drift. Perhaps additional habitat covariates could explain more of the deterministic

Figure 3. Estimated gradient vector field for the lower center region of Figure 3(b) (Bear Creek area) showing finer scale

movement vectors of elk to intensely grazed grassland at Starkey. Gray areas indicate canyon side slopes that exceed 40%. The

unit vector corresponds to 0.5 km/h
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movements. In both seasons, the drift term is smaller in the dusk period compared to dawn, suggesting

that attractions towards road refugia are perhaps stronger than movements towards foraging patches.

5. DISCUSSION AND CONCLUSIONS

Our work presents a flexible framework for modeling animal movement given discretely observed

animal tracks and habitat variables. Nonparametric smoothing techniques together with SDEs enabled

us to see patterns even when the signal to noise ratio was low. One of the advantages of the technique is

that we were able to estimate movement parameters, such as direction and size of displacement, for

each location that an animal visited. It was apparent that spatially and temporally explicit parameters

are needed to describe movement. Home range models with one center of attraction will not be

adequate for describing the complex movement of animals in heterogeneous terrain such as Starkey.

Another advantage of the nonparametric model was that no preconceived functional form beyond

smoothness was needed to model the drift. The method allows us to let the data suggest the form of

relationships between explanatory variables and the drift.

The potential function framework was another useful tool. In preliminary studies we tried to model

the drift term using nonparametric functions of distances and time of day (i.e. ignoring location). We

were not successful in finding any meaningful patterns. It was only after we set down the potential

Figure 4. Estimated gradient vector field for the Meadow Creek canyon (see Figure 1) indicating how elk movements are

influenced by topography. The unit vector corresponds to 0.5 km/h. Gray areas indicate canyon side slopes that exceed 40%. Elk

movements avoid steep topography and either avoid the canyon or cross it using finger ridges. The canyon creates two alternative

movement corridors for the dawn transition to grassland foraging areas
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function framework that we realized even when the force field (or potential function) is location

independent; for example, in the O-U model the drift terms depends on the direction of approach, and

hence, location. Work still remains to develop estimation techniques for more complicated, i.e. non-

Markovian, random processes. However, the framework of SDEs set down here will still be applicable.

For example, non-Markovian processes may be modeled by including time lags in the drift term. A

random group effect may be included in the variance term to extend the estimation to grouped data.

Methods for simulating estimated random process might also be of interest. In Brillinger (2003),

methods for simulating diffusion processes in restricted domains are described. This is of particular

interest when studying movement in restricted regions such as the fenced area of Starkey.

In previous studies, elk activity patterns have been broadly described as circadian cycles between

foraging and secure resting habitat with crepuscular transitions. Our analyses quantify the cycles of

movements in spring and summer in terms of attraction or repulsion to specific habitat features, and

illustrate the magnitude, timing and direction of these movements. The estimation of time-specific

movement vectors at Starkey adds a dynamic dimension to previous studies of habitat use in this area

by linking distributions at different times of the day (via a potential function) to the continuous process

of elk movements (drift terms).

The SDE framework we describe can represent multi-scale animal movements by the use of

multiple, additive potential functions corresponding to the attraction or repulsion to landscape features

of different spatial grain. The surface of one or more potential functions can be analyzed with spatial

metrics (connectivity, fragmentation, corridors, patch size), allowing the analysis of animal movement

behavior in a framework of landscape ecology (Kie et al., 2002).

Figure 5. Estimated vector fields for summer telemetry data at 0500 (a) and 1900 (b) hours. The unit vector corresponds to

0.8 km/h. Movement vectors show markedly diminished movement velocities in summer as compared to spring, and

qualitatively different movement patterns (cf. Figure 2)

MODELING ANIMAL MOVEMENTS 653

Published in 2004 by John Wiley & Sons, Ltd. Environmetrics 2004; 15: 643–657



Figure 6. Estimated individual potential curves for 3 dawn hours and 3 dusk hours during spring. According to the contours, elk

leave food patches and are attracted to areas of road refugia at dawn (imagine a ball rolling along the contour lines). At dusk, elk

leave the road refugia and move towards food patches

Figure 7. Smoothed estimates of the ratio of deterministic (drift) to random (standard deviation) terms. The ratios appear to be

highest at dawn (0500 hours) and dusk (2000 hours)
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In the current work, the potential functions represented larger-scale movements controlled mainly

by cognitive navigation at hourly time steps. The hourly time interval of the telemetry data precluded

the inclusion of additional terms for finer scale foraging movements. These movements were

represented as a random walk in the diffusion terms of the model. Our methods could be used to

model these finer scales of movements if data were collected at shorter time intervals.

An analogous application of SDEs arises with the attraction/repulsion with respect to conspecifics or

individuals of other species such as predators or competitors (Kie and Bowyer, 1999; Coe et al., 2001).

For instance, suppose that at time t there are predators at random locations rj(t). The attraction/repulsion

between predator and prey might be described by a potential function Hðr; tÞ ¼ �ðrÞ
PJ

j¼1 jr � rjðtÞj2
for some pertinent function �(�). This approach might be used to model other similar phenomena such

as avoidance of motorized vehicles by elk (Rowland et al., 2000).

The need for empirical methods like those we describe will grow as the rapid advances in

automated telemetry systems materialize, and large telemetry data sets are generated. Telemetry data

with sub-meter accuracy collected at very frequent time intervals coupled with high-resolution

satellite imagery will allow for parameterization of empirical models that span a broad scale of animal

behaviors. These models may provide for a more holistic assessment of how foraging movement and

search rules affect forage consumption rates and ultimately landscape process and pattern.
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APPENDIX: THIN PLATE SPLINE SURFACE AND DERIVATIVES

A two dimensional function, such as the potential function Hðs; tÞ, may be approximated by a linear

combination of basis functions as follows:

Hðs; tÞ ¼ �þ
XJ
j¼1

�juj log uj ð7Þ

where uj ¼ ðs� soj Þ
2 þ ðt � toj Þ

2
, soj ; t

o
j ; j ¼ 1; . . . J, are J knots on a grid around s and t, respectively,

and �j are parameters to be estimated.

For the elk data, s is taken to be the distance of an elk, at location (x; y) time t, from a point of

attraction/repulsion at coordinates (X; Y), i.e. s ¼ ðx� XÞ2 þ ðy� YÞ2
.

The partial derivatives of (7) with respect to x and y are:

@Hðs; tÞ
@x

¼
X
j

�j
@ðuj log ujÞ

@uj

@uj
@s

@s

@x

¼ 4
X
j

�jðlog uj þ 1Þ
�
s� soj

�
ðx� XÞ

@Hðs; tÞ
@y

¼ 4
X
j

�jðlog uj þ 1Þ
�
s� soj

�
ðy� YÞ

ð8Þ
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The equations in (8) with the basis functions 4ðlog uþ 1Þðs� soÞðx� XÞ and 4ðlog uþ 1Þ
ðs� soÞðy� YÞ were used in (5) to estimate the parameters �j. Estimates of the potential function,

up to a constant, were next obtained by substituting values of �̂�jin (7) above.
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Plate 1. (a) Estimated potential surface for 0500 hours during spring. (b) Kernel density estimate (elk/km2) for observed elk

locations between the hours of 1000 and 1300. Most of the areas of low potential (attraction regions) at dawn correspond with

regions of high elk density around noon
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